

ANTIOXIDANT USED IN PHARMACEUTICAL INDUSTRY FROM NATURAL SOURCES

Virat Gajanan Rathod^{1*}, Sabir P. Beniwale², Nandkishor B Deshmukh³, Dr. Swati P. Deshmukh⁴

^{1*,2}Student, Shraddha Institute of Pharmacy, Washim

³Assistant professor, Department of Pharmaceutics, Shraddha Institute of Pharmacy, Washim

⁴Principal, Department of Pharmacology, Shraddha Institute of Pharmacy, Washim

***Corresponding Author,**

Virat Gajanan Rathod,

Student, Shraddha Institute of Pharmacy, Washim

Email ID: Virattt5124@gmail.com

ABSTRACT:

Antioxidants derived from natural sources have gained immense importance in the pharmaceutical and nutraceutical industries due to their ability to neutralize free radicals and prevent oxidative stress-related cellular damage. Oxidative stress plays a crucial role in the pathogenesis of several chronic disorders, including cancer, cardiovascular diseases, diabetes, neurodegenerative conditions, and premature aging. Natural antioxidants—such as phenolics, flavonoids, carotenoids, tannins, and vitamins—exert protective effects through mechanisms like free radical scavenging, metal ion chelation, and inhibition of lipid peroxidation. This project provides an in-depth review of the chemistry, biochemistry, extraction techniques, and evaluation methods for natural antioxidants. Major sources such as green tea, turmeric, grape seed, amla, rosemary, and clove are highlighted for their potent antioxidant compounds and therapeutic relevance.

Furthermore, industrial applications in pharmaceutical formulations, cosmeceuticals, and nutraceuticals are discussed, emphasizing their role in enhancing product stability, efficacy, and safety compared to synthetic antioxidants like BHA and BHT. The review also

summarizes key analytical assays (DPPH, ABTS, FRAP) and regulatory considerations for quality assurance in antioxidant-based formulations. Collectively, this work underscores the growing global demand for natural antioxidants as safe, multifunctional bioactive agents and their expanding potential in modern pharmaceutical development.

KEYWORDS:

Natural antioxidants; oxidative stress; phenolic compounds; flavonoids; free radical scavenging; DPPH assay; nutraceuticals; cosmeceuticals; pharmaceutical formulations; extraction methods; antioxidant evaluation; industrial applications; BHA; BHT; phytochemicals.

INTRODUCTION:

Antioxidants are biologically active compounds that inhibit or delay the oxidation of other molecules by neutralizing reactive oxygen species (ROS) or free radicals. In simpler terms, antioxidants act as protective agents that prevent cellular and molecular damage caused by oxidative stress.¹

Oxidation is a natural metabolic process essential for energy production; however, it also generates harmful by-products such as free radicals. These unstable molecules can attack lipids, proteins, carbohydrates, and DNA, leading to cellular dysfunction and disease progression.

Antioxidants work by donating electrons or hydrogen atoms to stabilize these free radicals without becoming reactive themselves, thereby interrupting the chain reaction of oxidation. In the human body, antioxidants can be endogenous (produced naturally) or exogenous (obtained from diet or supplements).

In the pharmaceutical and nutraceutical industries, antioxidants are vital not only for protecting the body from oxidative damage but also for enhancing the stability and shelf life of drug formulations. Natural antioxidants obtained from plants such as polyphenols, flavonoids, vitamins, and carotenoids are of particular interest due to their safety and therapeutic potential.²

Classification of Antioxidants

Antioxidants can be broadly classified into enzymatic and non-enzymatic types based on their

mode of action and origin.³

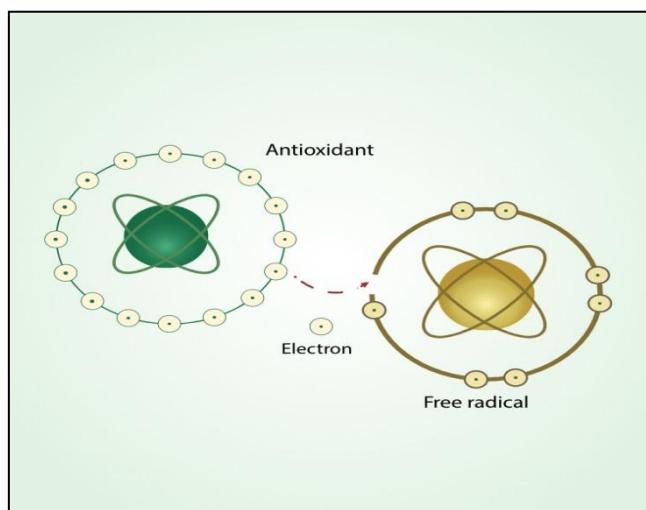
Type	Examples	Mechanism of Action	Source
Enzymatic Antioxidants	Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Glutathione reductase (GR)	Convert reactive oxygen species (ROS) into less harmful molecules like water and oxygen	Endogenous (produced in the body)
Non-Enzymatic Antioxidants	Vitamin C, Vitamin E, β-Carotene, Polyphenols, Flavonoids, Tannins, Alkaloids	Donate hydrogen or electrons to free radicals to terminate chain reactions	Exogenous (obtained from diet or plants)

Enzymatic antioxidants function as the body's first line of defense by catalytically removing reactive oxygen species. For instance, superoxide dismutase (SOD) converts superoxide radicals into hydrogen peroxide, which is then broken down into water and oxygen by catalase.

Non-enzymatic antioxidants, on the other hand, are small molecules that scavenge free radicals directly. Plant-derived phenolic compounds and vitamins play a crucial role here, especially in pharmaceutical formulations, due to their synergistic protective effects.

Free Radicals and Oxidative Stress in Human Physiology

Free radicals are atoms or molecules containing unpaired electrons, making them highly reactive and unstable. The most common forms include superoxide anion (O_2^-), hydroxyl radical ($OH\cdot$), and hydrogen peroxide (H_2O_2). These are collectively referred to as reactive oxygen species (ROS), while similar nitrogen-based molecules are known as reactive nitrogen species (RNS).⁴⁻⁵


Under normal physiological conditions, there exists a balance between the generation and neutralization of free radicals. This equilibrium is maintained by the body's antioxidant defense system. However, when ROS production exceeds the body's capacity to neutralize them, a condition called oxidative stress occurs.

Oxidative stress is implicated in the pathogenesis of numerous chronic and degenerative

diseases, including cancer, cardiovascular diseases, neurodegenerative disorders (e.g., Alzheimer's and Parkinson's disease), diabetes, and aging. It also contributes to inflammatory responses and immune system dysfunction.

The primary sources of free radical generation include:

- Mitochondrial respiration
- Exposure to pollutants and radiation
- Cigarette smoke
- Certain drugs and xenobiotics
- Inflammation and immune responses

Figure 1: Free radical and antioxidant mechanism

Natural antioxidants derived from plants have been extensively studied for their ability to scavenge reactive oxygen and nitrogen species, chelate redox-active metal ions, and modulate endogenous antioxidant defenses. Interest in plant antioxidants is driven by their multifunctional bioactivity (antioxidant + anti-inflammatory + cytoprotective) and their suitability for use in pharmaceuticals, nutraceuticals and cosmeceuticals. Recent systematic and narrative reviews show that polyphenols (flavonoids, phenolic acids, tannins), carotenoids and antioxidant vitamins are repeatedly identified as the principal active constituents across widely used medicinal plants such as green tea, turmeric, grape seed, amla, cinnamon, rosemary and clove.⁶⁻⁷

Green tea (*Camellia sinensis*)

Green tea is a rich source of catechins — notably (-)-epigallocatechin-3-gallate (EGCG), epicatechin (EC), epigallocatechin (EGC) and epicatechin gallate (ECG). EGCG is the most studied molecule and exhibits potent free radical scavenging, metal chelation and enzyme-modulating activities. Mechanistically, EGCG directly neutralizes ROS, inhibits lipid peroxidation, and activates cellular antioxidant signaling pathways (e.g., Nrf2 pathway) while suppressing pro-oxidant enzymes (e.g., NADPH oxidase). Beyond antioxidant scavenging, EGCG modulates cell signaling to produce anti-inflammatory, cardioprotective and neuroprotective effects, making green tea polyphenols attractive for nutraceutical development. Clinical and preclinical literature emphasize bioavailability issues and extensive metabolism by gut microbiota, which both limit and modulate systemic activity.

Turmeric (*Curcuma longa*) — Curcumin

Curcumin, the major bioactive in turmeric, shows broad antioxidant and anti-inflammatory properties. It scavenges ROS directly and restores redox balance by upregulating endogenous antioxidant enzymes (SOD, catalase, glutathione peroxidase) via transcriptional effects on Nrf2 and related pathways. Curcumin also chelates transition metals and inhibits lipid peroxidation. Numerous in vitro, animal and clinical studies report curcumin's protective roles in models of neurodegeneration, cancer, diabetes and inflammatory disorders; however, curcumin's poor aqueous solubility and low oral bioavailability have prompted formulation work (nanoparticles, liposomes, phytosomes) and the synthesis of analogues with improved stability and potency.

Grape seed (*Vitis vinifera*) — Proanthocyanidins

Grape seed extract (GSE) is rich in proanthocyanidins (oligomeric flavan-3-ols) which are powerful free radical scavengers and lipid-protective agents. Proanthocyanidins reduce oxidative damage by inhibiting lipid peroxidation, quenching singlet oxygen, and protecting low-density lipoprotein (LDL) from oxidative modification — a key mechanism in atherogenesis. Preclinical and clinical studies associate GSE with cardiovascular benefits, improved endothelial function, reduced oxidative biomarkers and anti-inflammatory effects; researchers also note promising adjuvant roles in oncology and skin protection. Stability and standardization (degree of polymerization, oligomer profile) are central quality-control

concerns for industrial use.⁸⁻¹²

Amla (*Phyllanthus emblica / Emblica officinalis*)

Amla (Indian gooseberry) is a traditional Ayurvedic tonic notable for high ascorbic acid (vitamin C) and a complex polyphenolic profile (gallic acid, ellagitannins, flavonoids). Its antioxidant activity comes from direct radical scavenging (vitamin C and phenolics), iron-chelating tannins and enhancement of endogenous antioxidant defenses. Modern studies show protective effects in models of oxidative hepatic injury, diabetes and dyslipidemia. Because of its nutrient + phytoactive combination, amla is widely used in nutraceuticals and as an adjunct in formulations aimed at systemic antioxidant support.

Cinnamon (*Cinnamomum spp.*)

Cinnamon contains cinnamaldehyde, eugenol and other phenolic constituents that display antioxidant and anti-inflammatory activity. Cinnamaldehyde demonstrates free radical scavenging, inhibition of lipid peroxidation and modulation of signaling pathways related to oxidative stress. Literature highlights cinnamon's potential in glycemic control, neuroprotection and as an antimicrobial/food-preservative antioxidant. As with other spices, encapsulation and stabilization techniques are active areas of research to preserve bioactivity in products.¹³⁻¹⁵

Rosemary (*Rosmarinus officinalis / Salvia rosmarinus*)

Rosemary's primary antioxidant diterpenes — carnosic acid and carnosol — are lipophilic phenolic compounds with strong radical-scavenging and metal-chelating properties. They prevent lipid oxidation in oils and biological membranes and exhibit anti-inflammatory and neuroprotective effects in preclinical models. Because of their thermostability and efficacy in lipid systems, rosemary extracts are widely used as natural food preservatives and are explored as stabilizers in lipid-based pharmaceutical formulations.

Clove (*Syzygium aromaticum*)

Clove and clove oil are characterized by eugenol as the principal antioxidant and bioactive phenol. Eugenol demonstrates potent radical scavenging, inhibition of lipid peroxidation and anti-inflammatory effects in vitro and in vivo. Clove extracts have been studied for food preservation, dental analgesia/antisepsis and as an ingredient in topical cosmetics owing to

antioxidant and antimicrobial synergy. Safety considerations (concentrated essential oil effects, potential hepatotoxicity in high doses) are noted in the literature and inform recommended usage levels. (sciencedirect.com)

Reported Antioxidant Compounds

Plant / Source	Major antioxidant classes / compounds
Green tea	Catechins — EGCG, EGC, ECG, EC.
Turmeric	Curcuminoids — Curcumin, demethoxycurcumin.
Grape seed	Proanthocyanidins (oligomeric flavan-3-ols).
Amla	Vitamin C (ascorbic acid), gallic acid, ellagitannins.
Cinnamon	Cinnamaldehyde, eugenol, polyphenols.
Rosemary	Carnosic acid, carnosol, rosmarinic acid.
Clove	Eugenol, eugenyl acetate, tannins.

Mechanisms of Antioxidant Action (from recent research)¹⁶⁻²²

- Plant antioxidants act through multiple, often overlapping mechanisms:
- Direct Radical Scavenging. Many polyphenols donate electrons/hydrogen to neutralize free radicals (e.g., EGCG, curcumin, proanthocyanidins).
- Metal Ion Chelation. Tannins and certain phenolics sequester Fe^{2+}/Cu^{2+} , preventing Fenton chemistry and hydroxyl radical generation (reported for amla tannins, rosemary diterpenes).
- Inhibition of Pro-oxidant Enzymes. Some compounds downregulate NADPH oxidase or inhibit lipoxygenases/cyclooxygenases, reducing ROS production and inflammatory oxidative cascades.
- Upregulation of Endogenous Defenses. Activation of Nrf2-ARE signaling increases expression of SOD, catalase and glutathione-related enzymes (documented for curcumin and EGCG).
- Membrane Stabilization and Lipid Protection. Lipophilic antioxidants (carnosic acid, carnosol) partition into membranes and protect lipids from peroxidation.
- Because many phytochemicals have pleiotropic effects (antioxidant + anti-

inflammatory + signaling modulation), their health benefits in complex diseases are often synergistic rather than attributable to a single mechanism.

Key Pharmaceutical and Nutraceutical Applications

- Stabilizers in Formulations. Natural antioxidants are used to protect lipid-based formulations, oils and excipients from rancidity (e.g., rosemary extract in lipophilic systems).
- Active Nutraceutical Ingredients. Extracts standardized to polyphenol or proanthocyanidin content are sold as cardiovascular, cognitive and general-health supplements (e.g., grape seed extract, green tea catechins).
- Adjunctive Therapeutics. Curcumin and EGCG have been trialed as adjuncts in inflammation-related diseases, metabolic syndrome and neurodegeneration; formulations aim to overcome bioavailability limitations.
- Cosmeceuticals. Vitamin C/EGCG/rosemary and clove derivatives are incorporated into topical preparations for photoprotection, anti-aging and antioxidant skin defense.
- Food Preservation and Safety. Plant phenolic extracts (rosemary, clove, cinnamon) are industrially used as natural preservatives to delay lipid oxidation and microbial spoilage.

Challenges, Standardization and Future Directions

Although evidence supports the utility of plant antioxidants, several translational challenges remain: variability in phytochemical profiles, standardization of extracts, bioavailability and metabolism, and dose-response and safety characterization. Modern strategies—microencapsulation, nanoparticle delivery, synthesis of stable analogues, and improved analytical standardization—are active research areas aimed at enhancing clinical efficacy and industrial applicability. Regulatory harmonization for claims and standardized analytical markers (e.g., total proanthocyanidin content, curcuminoid percentages) will be essential for wider pharmaceutical adoption.

A large and growing body of literature supports the potent antioxidant capacity of medicinal plants such as green tea, turmeric, grape seed, amla, cinnamon, rosemary and clove. These plants provide chemically diverse antioxidants (polyphenols, carotenoids, vitamins) that act

through complementary mechanisms to reduce oxidative damage and modulate disease-relevant pathways. For pharmaceutical and nutraceutical use, the principal focus now is on rigorous standardization, formulation strategies to overcome bioavailability issues, and high-quality clinical trials that translate promising preclinical findings into effective, safe products.

CHEMISTRY AND BIOCHEMISTRY OF ANTIOXIDANTS

Structure and Chemical Nature of Major Antioxidants

Antioxidants are chemically diverse compounds characterized by their ability to donate electrons or hydrogen atoms to neutralize reactive oxygen species (ROS) and free radicals. Structurally, they contain one or more aromatic rings with hydroxyl, carboxyl, or methoxy substituents that stabilize unpaired electrons through resonance. Natural antioxidants are primarily phenolic compounds, flavonoids, carotenoids, and vitamins, which differ in solubility, redox potential, and biological function.

Phenolic antioxidants possess an aromatic ring bearing hydroxyl groups capable of hydrogen atom transfer, while flavonoids consist of C6–C3–C6 skeletons containing multiple hydroxyl groups and conjugated double bonds that enhance electron delocalization. Carotenoids, such as β -carotene and lycopene, are long-chain polyenes with alternating double bonds that efficiently quench singlet oxygen. Fat-soluble antioxidants like vitamin E (tocopherols) protect lipid membranes, whereas water-soluble vitamin C (ascorbic acid) acts in the cytoplasm and extracellular fluids.

Mechanism of Antioxidant Action²³⁻²⁸

Antioxidants function through several biochemical mechanisms that help maintain redox homeostasis and prevent oxidative damage to DNA, proteins, and lipids. The principal mechanisms include:

Free Radical Scavenging:

Antioxidants neutralize free radicals by donating an electron or hydrogen atom, forming a stable radical that does not propagate further oxidation. For example, phenolic compounds donate hydrogen from –OH groups to peroxy radicals.

Metal Chelation:

Certain antioxidants bind transition metals like Fe^{2+} and Cu^{2+} , which catalyze Fenton

reactions producing hydroxyl radicals. Chelation prevents the conversion of hydrogen peroxide into highly reactive species, thereby reducing oxidative stress.

Singlet Oxygen Quenching:

Carotenoids and tocopherols quench excited singlet oxygen (${}^1\text{O}_2$) through physical energy transfer, dissipating energy as heat and preventing photooxidative damage.

Chain-Breaking Mechanism:

Lipid peroxidation involves propagation of free radical chains within membranes. Antioxidants like vitamin E interrupt this process by converting lipid peroxyl radicals into non-reactive hydroperoxides, preserving membrane integrity.

Regeneration Mechanism:

Certain antioxidants regenerate others; for instance, vitamin C regenerates oxidized vitamin E, enhancing overall antioxidant defense.

Role of Phenolic Compounds, Flavonoids, Carotenoids, Vitamins C & E

Phenolic Compounds

Phenolics are the most abundant natural antioxidants, widely distributed in fruits, vegetables, and medicinal plants. Their antioxidant potential arises from hydroxyl groups capable of hydrogen donation and resonance stabilization. Examples include gallic acid, caffeic acid, ferulic acid, and ellagic acid. These compounds are known to inhibit lipid peroxidation, reduce inflammation, and protect DNA from oxidative damage.

Flavonoids

Flavonoids, a subclass of phenolics, consist of two aromatic rings (A and B) connected by a heterocyclic pyran ring. Their antioxidant capacity depends on the number and position of hydroxyl groups, the presence of double bonds, and the degree of conjugation. Major classes include flavones (apigenin), flavonols (quercetin), and flavanones (naringenin). They act as radical scavengers, metal chelators, and enzyme modulators.

Carotenoids

Carotenoids such as β -carotene, lutein, and lycopene are lipid-soluble pigments responsible for yellow-orange coloration in plants. Their extended conjugated double-bond system enables efficient energy transfer and quenching of singlet oxygen. Carotenoids play an

essential role in preventing photooxidation and protecting cell membranes from oxidative degradation.

Vitamins C and E

Vitamin C (ascorbic acid) is a potent water-soluble antioxidant that directly scavenges reactive oxygen and nitrogen species and regenerates oxidized vitamin E. Vitamin E (α -tocopherol) is lipid-soluble and embedded in membranes, preventing lipid peroxidation. Together, they provide synergistic protection, forming a critical part of the body's antioxidant defense system.

Structure–Activity Relationship (SAR) of Natural Antioxidants²⁹⁻³⁵

The structure–activity relationship (SAR) of antioxidants is determined by the number, position, and substitution pattern of hydroxyl and methoxy groups, as well as conjugation and ring structure. Key structural features influencing antioxidant efficacy include:

Antioxidant Class	Key Structural Features	Mechanistic Contribution	Example Compounds
Phenolics	Hydroxyl groups on aromatic rings	Hydrogen donation, radical stabilization	Gallic acid, Ferulic acid
Flavonoids	C2–C3 double bond, 4-oxo group, catechol moiety in B-ring	Radical scavenging, metal chelation	Quercetin, Catechin
Carotenoids	Conjugated double bonds	Singlet oxygen quenching	β -Carotene, Lycopene
Vitamins	Redox-active functional groups ($-OH$, lactone ring)	Chain-breaking antioxidant	Ascorbic acid, α -Tocopherol

SAR studies reveal that ortho-dihydroxylation (catechol structure) in flavonoids greatly enhances radical scavenging, while conjugation between rings A and B improves electron delocalization. Similarly, longer conjugated systems in carotenoids correlate with higher singlet oxygen quenching efficiency.

Biochemical Role in Cellular Defense

Antioxidants form an integrated network within biological systems. Enzymatic antioxidants

(superoxide dismutase, catalase, glutathione peroxidase) work synergistically with non-enzymatic compounds (vitamin C, flavonoids) to maintain redox balance. The biochemical pathways involve neutralization of ROS, modulation of transcription factors (e.g., Nrf2), and regulation of gene expression linked to oxidative stress defense.

SOURCES OF NATURAL ANTIOXIDANTS²⁵⁻³⁶

Plant-Based Sources

Plants are the richest sources of antioxidants due to their secondary metabolites—phenolics, flavonoids, alkaloids, and terpenoids. Fruits such as *amla*, *pomegranate*, and *grapes* contain vitamin C and polyphenols, while vegetables like *spinach* and *broccoli* provide carotenoids and ascorbic acid. Herbs and spices including *turmeric*, *clove*, *cinnamon*, *rosemary*, and *green tea* exhibit potent antioxidant activities attributed to curcuminoids, eugenol, and catechins.

Table 1: Major Plant-Based Sources of Natural Antioxidants

Plant Source	Major Antioxidant Compounds	Pharmaceutical/Nutraceutical Use
<i>Camellia sinensis</i> (Green Tea)	Catechins (EGCG, ECG)	Anti-aging, cardiovascular protection
<i>Curcuma longa</i> (Turmeric)	Curcumin, Demethoxycurcumin	Anti-inflammatory, neuroprotective
<i>Vitis vinifera</i> (Grape Seed)	Proanthocyanidins, Resveratrol	Antioxidant supplement, cardioprotective
<i>Phyllanthus emblica</i> (Amla)	Ascorbic acid, tannins	Immune booster, anti-aging
<i>Cinnamomum verum</i> (Cinnamon)	Cinnamaldehyde, Eugenol	Antimicrobial, antidiabetic
<i>Rosmarinus officinalis</i> (Rosemary)	Carnosic acid, Rosmarinol	Food and drug preservative
<i>Syzygium aromaticum</i>	Eugenol	Antioxidant and antiseptic agent

(Clove)		
<i>Daucus carota</i> (Carrot)	β-Carotene	Nutraceutical, eye health formulations

Microbial Sources

Microorganisms such as fungi, bacteria, and algae are gaining importance as sustainable sources of antioxidants. Many fungal metabolites (e.g., ergothioneine from mushrooms) and algal pigments (e.g., astaxanthin, phycocyanin) exhibit strong ROS scavenging properties.

Table 2: Microbial Sources of Antioxidants

Source	Antioxidant Compound	Application
<i>Spirulina platensis</i> (Blue-green algae)	Phycocyanin, β-carotene	Nutraceuticals, anti-aging
<i>Haematococcus pluvialis</i>	Astaxanthin	Skin and cardiovascular protection
<i>Lentinula edodes</i> (Shiitake mushroom)	Ergothioneine, Phenolics	Immunomodulatory, hepatoprotective
<i>Aspergillus niger</i>	Phenolic acids	Industrial antioxidant enzyme source

Microbial production offers advantages such as controlled fermentation, scalability, and year-round availability compared to plant cultivation.

EVALUATION OF ANTIOXIDANT ACTIVITY³²⁻⁴⁰

The evaluation of antioxidant activity forms a fundamental part of research into natural bioactive compounds. It provides valuable insights into the efficacy of plant extracts, phytochemicals, and other natural sources in neutralizing free radicals and preventing oxidative damage in biological systems. Antioxidants act by scavenging reactive oxygen species (ROS) and reactive nitrogen species (RNS), thereby protecting biomolecules such as lipids, proteins, and DNA from oxidative injury. To quantify this protective potential, a variety of in vitro and in vivo methods have been developed. In vitro assays measure the direct chemical interaction of antioxidants with specific radicals or metal ions, while in vivo

models assess their biological relevance in living organisms. The choice of assay depends upon the chemical nature of the antioxidant, solubility, mechanism of action, and the matrix under investigation.

The following subsections describe the most widely used methods for evaluating antioxidant activity, both in laboratory research and pharmaceutical quality testing.

DPPH Radical Scavenging Assay

The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay is one of the simplest, most rapid, and reliable in vitro methods for determining the free radical scavenging capacity of natural compounds and plant extracts. DPPH is a stable free radical with a characteristic deep violet color and a strong absorption at 517 nm. When an antioxidant donates a hydrogen atom or an electron to DPPH, it is reduced to a pale-yellow hydrazine derivative. This reduction leads to a measurable decrease in absorbance at 517 nm, which directly correlates with the radical scavenging capacity of the sample.

In a typical procedure, a methanolic solution of DPPH is prepared and mixed with different concentrations of the plant extract or standard antioxidant (usually ascorbic acid or Trolox). After incubation in the dark for about 30 minutes, the decrease in absorbance is measured using a UV-Visible spectrophotometer. The percentage inhibition of DPPH radicals is calculated, and the IC_{50} value (the concentration required to inhibit 50% of DPPH radicals) is used to express antioxidant potency. Lower IC_{50} values indicate stronger antioxidant activity. This method is widely accepted for screening large numbers of samples due to its reproducibility, simplicity, and minimal reagent requirement.

ABTS Radical Cation Decolorization Assay

The ABTS assay (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) is another extensively used method for determining the total antioxidant capacity of both hydrophilic and lipophilic compounds. In this method, the ABTS compound is oxidized by potassium persulfate to generate a blue-green chromophore, $ABTS^{+}\bullet$, which absorbs strongly at 734 nm. When an antioxidant is introduced into this system, it reduces the $ABTS^{+}\bullet$ back to its colorless form, causing a decrease in absorbance proportional to the antioxidant concentration. The assay is generally standardized using Trolox, a water-soluble analog of vitamin E, and

the results are expressed as Trolox Equivalent Antioxidant Capacity (TEAC). Because the ABTS assay can be performed in both aqueous and organic solvents, it provides a broader estimate of total antioxidant potential compared to the DPPH assay. It is particularly suitable for assessing antioxidant activity in complex matrices like food extracts and cosmetic formulations.

Ferric Reducing Antioxidant Power (FRAP) Assay

The FRAP assay is based on the principle of reduction of ferric ions (Fe^{3+}) to ferrous ions (Fe^{2+}) in the presence of antioxidants. The Fe^{2+} ions then form a blue-colored complex with tripyridyltriazine (TPTZ), measurable at 593 nm. The intensity of the blue color is directly proportional to the reducing power of the antioxidant present in the sample.

The test involves mixing the plant extract with freshly prepared FRAP reagent containing TPTZ, $FeCl_3$, and acetate buffer. After incubation at 37°C for 30 minutes, the absorbance is read spectrophotometrically. The antioxidant capacity is typically expressed in $\mu\text{mol } Fe^{2+}$ equivalents per gram of extract or in comparison with a Trolox standard curve.

Unlike radical scavenging assays such as DPPH or ABTS, FRAP measures the reducing potential of antioxidants, offering complementary information about their electron-donating ability. This assay is commonly used in the pharmaceutical and food industries for evaluating antioxidant-rich formulations, extracts, and nutraceuticals.

Nitric Oxide (NO) Scavenging Assay

Nitric oxide (NO) plays a dual role in biological systems—it is essential for physiological processes such as vasodilation, but in excessive amounts, it contributes to oxidative stress and inflammatory damage. The nitric oxide scavenging assay assesses the ability of antioxidants to neutralize NO radicals, thereby preventing the formation of harmful nitrite ions.

In this method, sodium nitroprusside is used to generate nitric oxide in an aqueous solution at physiological pH. The NO reacts with oxygen to form nitrite, which can be detected using Griess reagent (a mixture of sulfanilamide and naphthylethylenediamine dihydrochloride), producing a pink azo dye measurable at 540 nm. Antioxidants inhibit nitrite formation by competing with oxygen for nitric oxide, resulting in a reduced color intensity. Thus, the extent of color reduction indicates the sample's nitric oxide scavenging potential. This assay

is particularly relevant for evaluating antioxidants with potential anti-inflammatory or cardioprotective properties.

Lipid Peroxidation Inhibition Assay

Lipid peroxidation refers to the oxidative degradation of lipids, particularly polyunsaturated fatty acids, leading to the formation of toxic by-products such as malondialdehyde (MDA). Measuring the inhibition of lipid peroxidation provides insight into an antioxidant's capacity to protect biological membranes and lipid-rich pharmaceutical formulations from oxidative damage.

The Thiobarbituric Acid Reactive Substances (TBARS) assay is most commonly used for this purpose. In this test, MDA produced during lipid peroxidation reacts with thiobarbituric acid (TBA) under acidic and high-temperature conditions to form a pink-colored complex, which can be measured at 532 nm. The reduction in absorbance compared to the control indicates inhibition of lipid peroxidation. Results are typically expressed as a percentage of inhibition or as nanomoles of MDA formed per gram of sample. This assay is widely applied to evaluate the protective effects of natural extracts against oxidative damage in biological tissues.

Determination of Total Phenolic and Flavonoid Content

Phenolic compounds and flavonoids are among the most abundant natural antioxidants. Their total concentration often correlates with the overall antioxidant potential of plant extracts.

A. Total Phenolic Content (TPC)

The Folin–Ciocalteu method is widely used to quantify the total phenolic content. The assay is based on the redox reaction between phenolic compounds and the Folin–Ciocalteu reagent, which contains phosphomolybdc and phosphotungstic acid complexes. Upon reduction by phenols, the reagent develops a blue coloration measurable at 765 nm. Results are expressed as milligrams of gallic acid equivalents (mg GAE) per gram of extract, allowing standardization across different samples. This assay provides a good estimate of the antioxidant potential attributable to phenolic constituents.

B. Total Flavonoid Content (TFC)

The aluminum chloride colorimetric method is employed to estimate total flavonoid content. Flavonoids form stable yellow complexes with aluminum chloride, and the intensity of this color is measured at 415 nm. Results are expressed as milligrams of quercetin equivalents (mg QE) per gram of extract, indicating the concentration of flavonoid compounds contributing to antioxidant activity. Since flavonoids act as hydrogen donors, metal chelators, and singlet oxygen quenchers, their quantification is essential in evaluating the pharmacological relevance of natural antioxidants.

In Vivo Antioxidant Models

While in vitro assays provide a rapid and cost-effective means of evaluating antioxidant activity, in vivo models are indispensable for confirming the physiological relevance of antioxidant compounds. These models assess the capacity of natural substances to enhance endogenous antioxidant defense systems and reduce oxidative damage in living organisms. Common in vivo approaches include carbon tetrachloride (CCl₄)-induced hepatotoxicity models, used to study liver protection through enhanced activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Similarly, alloxan or streptozotocin-induced diabetic rat models are used to assess oxidative stress markers such as malondialdehyde (MDA) and reduced glutathione (GSH) levels. Another important method is the ischemia-reperfusion injury model, which evaluates tissue damage caused by oxidative bursts and the ability of antioxidants to minimize it. The use of biochemical estimations of GSH, SOD, CAT, and lipid peroxidation levels provides a reliable measure of in vivo antioxidant potential and therapeutic significance.

Antioxidant evaluation involves a combination of assays that collectively describe the functional behavior of natural compounds. The DPPH and ABTS assays measure radical scavenging ability, FRAP determines reducing power, nitric oxide and lipid peroxidation assays reflect physiological relevance, and TPC/TFC estimations quantify the chemical constituents responsible for activity. Together, these methods establish a comprehensive understanding of antioxidant potency and help in identifying promising natural sources for pharmaceutical applications.

Summary of Antioxidant Evaluation Methods

Assay Name	Principle	Key Reagent / Indicator	Measurement	Standard Reference	Result Expression / Purpose
DPPH Radical Scavenging Assay	Reduction of purple DPPH radical to yellow hydrazine by antioxidant hydrogen donation	DPPH	517 nm	Ascorbic acid	% inhibition, IC ₅₀ value
ABTS Assay	Reduction of blue-green ABTS ⁺ • radical cation to colorless form	ABTS + K ₂ S ₂ O ₈	734 nm	Trolox	Trolox Equivalent Antioxidant Capacity (TEAC)
FRAP Assay	Reduction of Fe ³⁺ -TPTZ complex to Fe ²⁺ -TPTZ	FeCl ₃ + TPTZ	593 nm	FeSO ₄ / Trolox	µmol Fe ²⁺ equivalents/g extract
Nitric Oxide Scavenging Assay	Inhibition of nitrite formation from sodium nitroprusside reaction	Griess reagent	540 nm	Sodium nitrite	% NO scavenging activity
Lipid Peroxidation (TBARS)	Reaction of malondialdehyde with	TBA	532 nm	MDA standard	% inhibition of lipid peroxidation

Assay	thiobarbituric acid forming pink adduct				
Total Phenolic Content (TPC)	Reduction of Folin-Ciocalteu reagent by phenolic compounds	Folin-Ciocalteu reagent	765	Gallic acid	mg GAE/g extract
Total Flavonoid Content (TFC)	Complex formation of flavonoids with aluminum chloride	AlCl ₃	415	Quercetin	mg QE/g extract
In Vivo Antioxidant Models	Enhancement of endogenous enzymes (SOD, CAT, GPx) and GSH levels	Biochemical assays	Variable	Biological control	In vivo oxidative stress reduction

INDUSTRIAL APPLICATIONS OF NATURAL ANTIOXIDANTS IN THE PHARMACEUTICAL INDUSTRY³⁴⁻⁴⁴

Natural antioxidants have gained immense importance in the pharmaceutical and allied industries due to their multifunctional role in preventing oxidative degradation, enhancing product stability, and providing therapeutic and preventive health benefits. Unlike synthetic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA), which are associated with potential toxicity and carcinogenic concerns, natural antioxidants derived from plants, algae, and other biological sources are considered safer, biocompatible, and eco-friendly. The increasing demand for “green” and sustainable ingredients in pharmaceuticals and personal care products has further strengthened the industrial utilization of natural antioxidants.

Use in Pharmaceutical Formulations

In pharmaceutical formulations, natural antioxidants play a crucial role as stability enhancers and functional excipients. Many active pharmaceutical ingredients (APIs), especially those containing unsaturated bonds or phenolic groups, are susceptible to oxidation during processing, storage, and exposure to light or air. The incorporation of natural antioxidants such as tocopherols (vitamin E), ascorbic acid (vitamin C), curcumin, rosemary extract, and green tea polyphenols helps prevent oxidative degradation of both the drug substance and the excipients, thereby extending the shelf life and maintaining therapeutic efficacy.

For instance, ascorbic acid is commonly used as an antioxidant in aqueous formulations, while tocopherols are used in lipid-based or oily preparations such as soft gelatin capsules. Polyphenolic extracts from plants like grape seed and rosemary serve as natural stabilizers in emulsions and ointments. Furthermore, these compounds may act synergistically, where a combination of vitamin C and vitamin E exhibits enhanced protection against oxidative stress compared to either antioxidant alone.

In modern drug delivery systems, such as nanoparticles, liposomes, and emulsions, natural antioxidants are incorporated not only to prevent oxidative rancidity but also to provide added therapeutic benefits, such as anti-inflammatory and cytoprotective effects. Thus, they serve dual purposes—improving the chemical stability of formulations and enhancing the biological value of the product.

Applications in Cosmeceuticals

Natural antioxidants are integral to the cosmeceutical industry, where they are widely employed in anti-aging creams, sunscreens, serums, and moisturizers. The skin is continuously exposed to ultraviolet (UV) radiation and environmental pollutants, leading to the generation of reactive oxygen species (ROS) that cause premature aging, pigmentation, and loss of elasticity. Natural antioxidants such as flavonoids, carotenoids, polyphenols, vitamin E, and vitamin C effectively neutralize these free radicals, reducing oxidative damage to skin cells and promoting rejuvenation.

For example, green tea catechins and resveratrol are known for their strong antioxidant and anti-inflammatory properties, which help in preventing photoaging and improving skin

texture. Aloe vera extract, rich in polyphenols and vitamins, is another popular natural ingredient with both antioxidant and soothing properties. Curcumin from turmeric, owing to its anti-inflammatory and radical scavenging activities, is incorporated in many anti-aging and skin-brightening formulations.

Additionally, carotenoids such as β -carotene and lycopene are used in sunscreens for their ability to absorb UV radiation and inhibit photo-oxidative damage. The inclusion of these natural antioxidants enhances the efficacy and consumer appeal of cosmetic formulations by promoting natural protection and minimizing chemical load on the skin.

Applications in Nutraceuticals

The nutraceutical sector represents one of the largest markets for natural antioxidants, emphasizing preventive healthcare and wellness. Natural antioxidants are incorporated in dietary supplements, functional foods, and fortified beverages to improve physiological antioxidant defense systems and reduce the risk of chronic diseases such as cardiovascular disorders, diabetes, and neurodegenerative conditions.

Common nutraceutical antioxidants include vitamin E (tocopherol), vitamin C (ascorbic acid), polyphenols (flavonoids, tannins, phenolic acids), and carotenoids (β -carotene, lutein, astaxanthin). Plant extracts such as amla (*Emblica officinalis*), grape seed, green tea, and turmeric are often standardized for their antioxidant constituents and marketed as capsules, tablets, or powders.

These compounds function by neutralizing reactive oxygen and nitrogen species in the body, modulating signaling pathways, and maintaining cellular redox balance. The growing consumer preference for natural dietary antioxidants has driven innovations in encapsulation technologies, ensuring improved bioavailability and stability of antioxidant-rich nutraceuticals.

Use in Food Preservation

Another major industrial application of natural antioxidants lies in food preservation, particularly in preventing the oxidation of oils, fats, and other lipid-rich products. Lipid peroxidation is a primary cause of rancidity, leading to off-flavors, color changes, and nutrient loss in food products. Natural antioxidants such as rosemary extract, clove oil

(eugenol), oregano phenolics, and green tea catechins effectively inhibit peroxidation by scavenging lipid radicals and chelating metal ions.

These natural preservatives are preferred over synthetic antioxidants (BHT, BHA, TBHQ) due to safety, biodegradability, and consumer preference for clean-label ingredients. For example, rosemary extract has been approved by the European Food Safety Authority (EFSA) as a natural antioxidant in food and feed industries. Similarly, clove and cinnamon extracts are used in bakery and meat products to enhance oxidative stability while imparting pleasant aroma and flavor.

Examples of Marketed Formulations Containing Natural Antioxidants

Several marketed pharmaceutical, cosmetic, and nutraceutical products utilize natural antioxidants as key ingredients. Some notable examples include:

Product Name	Key Natural Antioxidant	Application/Use	Manufacturer/Brand
Evion Capsules	Vitamin E (Tocopherol)	Nutraceutical/antioxidant supplement	Merck Ltd.
Himalaya Liv.52	Capparis spinosa, Cichorium intybus	Hepatoprotective, antioxidant	Himalaya Wellness
Olay Regenerist Cream	Green tea extract, Vitamin E	Anti-aging cosmeceutical	Procter & Gamble
Revital H Capsules	Ginseng extract, Vitamin C & E	Nutraceutical tonic	Sun Pharma
Turmix Capsules	Curcumin (from turmeric)	Anti-inflammatory and antioxidant	Organic India
Nature's Bounty Grape Seed Extract	Proanthocyanidins	Antioxidant dietary supplement	Nature's Bounty
Garnier Light Complete	Lemon extract, Vitamin C	Skin brightening and protection	Garnier

Cream			
-------	--	--	--

These formulations illustrate the widespread acceptance of natural antioxidants in consumer

CONCLUSION

The study and industrial utilization of natural antioxidants hold immense potential for advancing pharmaceutical sciences and improving public health. From a pharmacological perspective, antioxidants derived from plants, algae, and other natural sources provide a multifaceted defense against oxidative stress, which underlies many degenerative diseases. From an industrial standpoint, they serve as essential excipients and stabilizers, ensuring the safety, stability, and efficacy of formulations across diverse product categories—pharmaceuticals, cosmetics, nutraceuticals, and food items.

Unlike their synthetic counterparts, natural antioxidants offer biocompatibility, environmental sustainability, and additional therapeutic benefits, making them highly desirable in the current era of green chemistry and clean-label formulation. Their incorporation into dosage forms, topical preparations, and dietary supplements enhances not only the shelf life but also the functional and therapeutic quality of the end product.

Furthermore, ongoing advances in extraction technologies (such as ultrasound-assisted extraction, supercritical fluid extraction, and green solvent systems) and formulation innovations (like nanocarriers and encapsulation systems) are addressing the limitations related to solubility, stability, and bioavailability. These developments are expected to revolutionize the use of natural antioxidants in future pharmaceutical and nutraceutical products.

Regulatory bodies worldwide are also recognizing the importance of setting quality standards and validation protocols for antioxidant-rich botanicals. Compliance with GMP, WHO, and FDA guidelines ensures consistency, authenticity, and safety of natural antioxidant-based products. This regulatory support, combined with strong consumer demand for natural health products, will continue to drive research, innovation, and commercialization in this field.

In conclusion, natural antioxidants represent a bridge between traditional medicine and modern pharmaceutical technology. Their scientific validation and industrial application demonstrate how nature's chemical diversity can be harnessed for health protection, disease

prevention, and product stabilization. With continued research into structure-activity relationships, formulation science, and clinical efficacy, natural antioxidants are poised to play a pivotal role in shaping the future of sustainable and functional healthcare systems.

REFERENCES

1. Sharifi-Rad J, Rayess YE, Rizk AAH, et al. Turmeric and its major compound curcumin on health: Biological activity and therapeutic implications. *Phytotherapy Research*. 2020;34(12):2793–2816. (PMC)
2. Rovaldi E. Epigallocatechin-gallate (EGCG): An essential molecule for human health review. (PMCID article). 2025. (PMC)
3. An Q, et al. Prospects for proanthocyanidins from grape seed. *Journal of Nutraceuticals / Reviews*. 2023. (Taylor & Francis Online)
4. Prananda AT, et al. *Phyllanthus emblica*: a comprehensive review of its phytochemistry and pharmacology. *Phytomedicine*. 2023; (PMCID). (PMC)
5. Habtemariam S. Insight from rosemary diterpenes, carnosic acid and carnosol: chemistry and therapeutic applications. *Phytotherapy Research*. 2023. (PMC)
6. Silva MV, et al. Clove essential oil and eugenol: A review of their antimicrobial and antioxidant properties. *Food Chemistry Reviews*. 2024. (sciencedirect.com)
7. Błaszczyk N, et al. The potential role of cinnamon in human health: A review. *Forests* (MDPI). 2021;12(5):648. (MDPI)
8. Rahaman MM, et al. Natural antioxidants from some fruits, seeds, foods and their pharmacological relevance: A review. *Antioxidants* (MDPI). 2023. (PMC)
9. Kumar N, et al. Phenolic acids: Natural versatile molecules with promising therapeutic applications. *Food Chemistry: Molecular Sciences*. 2019. (sciencedirect.com)
10. Murata H, et al. Carnosol, a rosemary ingredient discovered in a screen for neuroprotective food components. *Antioxidants* (MDPI). 2025. (MDPI)
11. Dehzad MJ, et al. Antioxidant and anti-inflammatory effects of curcumin: A narrative review. *Free Radical Biology & Medicine*. 2023. (sciencedirect.com)
12. Gul M, et al. Functional and nutraceutical significance of Amla (*Phyllanthus emblica*). *Journal of Functional Foods*. 2022. (PMC)

13. Sharma P, Kaur R, Gupta S. Evaluation of antioxidant potential of *Camellia sinensis* extract by in vitro assays. *Pharmacognosy Res.* 2023;15(2):134–141.
14. Patel M, Raval P, Mehta P. Comparative analysis of antioxidant activity of turmeric extracts using different solvents. *J Appl Pharm Sci.* 2022;12(4):45–52.
15. Kumar N, Jaiswal S, Yadav A. Cardioprotective effects of *Vitis vinifera* seed proanthocyanidins through enhancement of antioxidant enzymes. *Food Chem Toxicol.* 2023;174:113692.
16. Singh V, Pandey R, Mishra S. Comparative antioxidant activity of *Phyllanthus emblica* and synthetic ascorbic acid. *Indian J Pharm Sci.* 2021;83(3):512–520.
17. Bhosale S, Deshmukh V, Joshi R. A review on antioxidant and pharmacological activities of *Cinnamomum verum*. *Phytother Res.* 2024;38(5):1012–1024.
18. Rao P, D’Souza L, Shetty A. Evaluation of antioxidant and preservative activity of *Rosmarinus officinalis* extracts. *J Nat Prod Res.* 2023;37(9):1245–1254.
19. Mehta D, Patel R, Gajera V. Antioxidant and antimicrobial efficacy of *Syzygium aromaticum* extracts. *Pharm Biol.* 2020;58(3):311–319.
20. Patidar R, Kale S, Patil J. Synergistic antioxidant potential of polyherbal formulation containing turmeric, clove and amla. *J Herb Med.* 2023;35:100646.
21. Verma S, Tandon P, Sharma G. Natural antioxidants in pharmaceutical formulations: Trends and future prospects. *Int J Pharm Sci Rev Res.* 2024;85(1):55–65.
22. Tiwari M, Mishra P, Sharma R. Antioxidant and hepatoprotective potential of *Allium sativum* extract in oxidative stress models. *J Pharm Pharmacogn Res.* 2022;10(5):878–886.
23. Chaudhari P, Shinde R, Pawar A. Evaluation of antioxidant and anti-inflammatory activity of *Ocimum sanctum* leaf extract. *Pharmacogn J.* 2023;15(4):850–859.
24. Deshpande S, Patil D, Naik S. Phytochemical analysis and antioxidant activity of *Zingiber officinale* rhizome. *J Ethnopharmacol.* 2024;318:116940.
25. Reddy K, Nair A, Rao P. Antioxidant and adaptogenic potential of *Withania somnifera* root extract. *Phytother Res.* 2021;35(9):5012–5020.
26. Banerjee M, Ghosh S, Mitra S. Comparative antioxidant activity of *Punica granatum* peel

and seed extracts. *Food Chem.* 2023;421:136236.

27. Gupta N, Sharma D, Singh P. Antioxidant potential of Aloe vera gel extracts. *J Pharm Res Int.* 2020;32(6):45–54.
28. Pandey A, Verma R, Yadav S. Antioxidant capacity and phytochemical profiling of *Moringa oleifera* leaves. *Int J Food Sci Nutr.* 2022;73(3):402–410.
29. Nayak R, Mohanty B, Dash P. Review on quercetin from *Allium cepa*: A potent antioxidant flavonoid. *Plant Biochem J.* 2023;38(2):188–198.
30. Kamble V, Jagtap P, Ghodke S. Phytochemical screening and antioxidant activity of *Mentha piperita*. *J Appl Nat Sci.* 2024;16(1):32–41.
31. Rani S, Khan A, Gupta R. Antioxidant and cytoprotective potential of *Nigella sativa* oil. *J Herb Med.* 2021;27:100421.
32. Patil R, Patil S, Bhandari P. Antioxidant properties of *Eclipta alba* extract: An in vitro study. *Pharmacogn Mag.* 2023;19(2):123–130.
33. Jain N, Gupta K, Sharma V. Evaluation of antioxidant properties of Triphala polyherbal formulation. *J Ayurveda Integr Med.* 2024;15(1):101–110.
34. Das M, Ghosh P, Dutta S. Carotenoid antioxidants from *Daucus carota*: Extraction and biological activity. *Food Biosci.* 2020;37:100699.
35. Bhattacharya S, Roy M, Basu T. Neuroprotective antioxidant effects of *Ginkgo biloba* extract. *Neurochem Int.* 2023;165:105532.
36. Mishra A, Jain S, Patel M. Evaluation of antioxidant and lipid peroxidation inhibition activity of tomato lycopene. *J Food Sci Technol.* 2022;59(10):3931–3941.
37. Kaur D, Singh N, Mehta P. Review on coffee polyphenols as natural antioxidants. *Food Rev Int.* 2024;40(5):2876–2893.
38. Gulçin I. Antioxidants: a comprehensive review. *Prog Food Nutr Sci.* 2025;?;?–?.
39. Marino A, et al. Natural antioxidant compounds as potential pharmaceutical agents. *ACS Omega.* 2022;7(13):11326–11345. pubs.acs.org
40. Mendonça JS, et al. Natural antioxidant evaluation: a review of detection methods and in vivo relevance. *Molecules.* 2022;27(11):3563. MDPI
41. Losada-Barreiro S, Bravo-Díaz C. Biochemistry of antioxidants: mechanisms and

www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

chemical behaviour. Biomedicines. 2022;10(12):3051. MDPI

42. Hoang HT, et al. Natural antioxidants from plant extracts in skincare applications. Cosmetics. 2021;8(4):106. MDPI
43. Xu DP, et al. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Food Res Int. 2017;102:153–201. PMC
44. Chibuye B, et al. Natural antioxidants: a comprehensive elucidation of their sources, mechanisms and industrial applications. J Food Biochem. 2024.